Tags

, , , , , ,

8.8 Magnitude Earthquake in Chile –
In the time period since the earthquake’s origin at 2010-02-27 06:34 to 2010-03-01 16:00 UTC, the USGS NEIC has located 121 aftershocks of magnitude 5.0 or greater. Eight of these aftershocks have magnitudes of 6.0 or greater.

Earthquake Summary

Small  globe showing earthquakeSmall map showing earthquake

Earthquake Summary Poster

Tectonic Summary

This earthquake occurred at the boundary between the Nazca and South American tectonic plates. The two plates are converging at a rate of 70 mm per year. The earthquake occurred as thrust-faulting on the interface between the two plates, with the Nazca plate moving down and landward below the South American plate.

Coastal Chile has a history of very large earthquakes. Since 1973, there have been 13 events of magnitude 7.0 or greater. The February 27 shock originated about 230 km north of the source region of the magnitude 9.5 earthquake of May, 1960 — the largest earthquake worldwide since the beginning of instrumental seismology at the beginning of the twentieth century. The giant 1960 earthquake spawned a tsunami that caused destruction on coasts throughout the Pacific Ocean basin. An estimated 1600 lives were lost to the 1960 earthquake and tsunami in Chile, and the 1960 tsunami took another 200 lives among Japan, Hawaii, and the Philippines. Approximately 300 km to the north of the February 27 earthquake is the source region of the magnitude 8.2 earthquake of August 17, 1906. The tsunami associated with the 1906 earthquake produced some damage in Hawaii, with reported run-up heights as great as 3.5 m. Approximately 870 km to the north of the February 27 earthquake is the source region of the magnitude 8.5 earthquake of November, 1922. The 1922 earthquake significantly impacted central Chile, killing several hundred people and causing severe property damage. The 1922 quake generated a 9-meter local tsunami that inundated the Chile coast near the town of Coquimbo; the tsunami also crossed the Pacific, washing away boats in Hilo harbor, Hawaii. The magnitude 8.8 earthquake of February 27, 2010 ruptured the portion of the South American subduction zone separating the source regions of the 1960 and 1906 earthquakes.

A large vigorous aftershock sequence can be expected from this earthquake.

  • Aftershock Report

    In the time period since the earthquake’s origin at 2010-02-27 06:34 to 2010-03-01 16:00 UTC, the USGS NEIC has located 121 aftershocks of magnitude 5.0 or greater. Eight of these aftershocks have magnitudes of 6.0 or greater. See

    Aftershock Map

    Earthquake Information for Chile

    Earthquake Information for South America

    Predecessors of the giant 1960 Chile earthquake – Brian Atwater, Nature 437, 404-407 (15 September 2005)


  • ***

    **

    http://en.wikipedia.org/wiki/Puyehue-Cord%C3%B3n_Caulle

    350px-Puyehueenlosandes

    http://en.wikipedia.org/wiki/File:Puyehueenlosandes.jpg

    http://upload.wikimedia.org/wikipedia/en/thumb/3/3e/Puyehueenlosandes.jpg/350px-Puyehueenlosandes.jpg

    http://upload.wikimedia.org/wikipedia/en/thumb/3/3e/Puyehueenlosandes.jpg/200px-Puyehueenlosandes.jpg

    Volcanic and tectonic map of the Andes with Puyehue-Cordón Caulle’s (PCCVC) location

    1960 eruption

    Eruption of Cordón Caulle following the 1960 Valdivia earthquake

    On May 24, 38 hours after the main shock of the 1960 Valdivia earthquake, the largest earthquake recorded in history, Cordón Caulle began a rhyodacitic fissure eruption. The 1960 earthquake had previously struck the whole of Chile between Talca (30°S) and Chiloé (43°S) and had an estimated moment magnitude of 9.5. Being located between two sparsely populated and by then isolated Andean valleys the eruption had few eyewitnesses and received little attention by local media due to the huge damages and losses caused by the main earthquake.[4] The eruption was fed by a 5.5 kilometres (3 mi) long and north west-west (N135°) trending fissure along which 21 individual vents have been found. These vents produced an output of about 0.25 cubic kilometres (202,678 acre·ft) DRE both in form of lava flows and tephra.

    The eruption begun in a sub-plinian style creating a column of volcanic gas, pyroclasts and ash about 8 km in height. The erupting N135° trending fissure had two craters of major activity emplaced at each end; the Gris Crater and El Azufral Crater. Volcanic vents of Cordón Caulle that were not in eruption produced visible steam emissions. After this explosive phase the eruption changed character to a more effusive one marked by rhyodacitic blocky and Aa type lava flows emitted from the vents along the N135° trending fissure. A third phase followed with the appearance of short north-north west (N165°) oriented vents transverse to the main fissure which also erupted rhyodacitic lava. The third phase ended temporarily with viscous lava obstructing the vents, but continued soon with explosive activity restricted to the Gris and El Azufral craters. The eruption come to an end on July 22.[4]

    Activity after 1960

    Following the end of the 1960 eruption, Cordón Caulle has remained relatively quiet if compared with the first half of the 20th century. On March 2 of 1972 there was a report of an eruption west of Bariloche in Argentina. The Chilean emergency office ONEMI organized a flight over the area with two volcanologists abroad. Puyehue and Cordón Caulle as well the Carrán crater were found without activity.[10] From accounts of local inhabitants of the area it is inferred that a small pumice cone was formed around 1990. In 1994 a temporarily emplaced seismic network registered tremors north of Puyehue’s cone which reached IV and V degrees on the Mercalli intensity scale. This prompted ONEMI to invoke an emergency action comite, however soon afterwards unrest ceased.[1]

    Puyehue-Cordón Caulle

    Postglacial volcanism

    View from Puyehue’s summit into its crater

    Only Puyehue and Cordón Caulle have erupted during the Holocene, and of these only Cordón Caulle has recorded historical eruptions. In the interval between 7,000 to 5,000 years ago Puyehue had rhyolitic eruptions that produced lava domes. The lava domes were later destroyed after a sequence of strong eruptions that were part of a explosive eruptive cycle. These last eruptions were likely of phreatomagmatic and sub-plinian type and occurred around 1,100 years ago (~850 CE).[9]

    Recent eruptive history

    Eruptive records in Cordón Caulle, the only active centre in the Puyehue-Cordón Caulle system in historical times, are relatively scarce. This is explained by the geographical position of Cordón Caulle and the history of Spanish and Chilean settlement in southern Chile. After a failed attempt in 1553, governor García Hurtado de Mendoza founded the city of Osorno in 1558, the only Spanish settlement in the zone, 80 kilometres (50 mi) west of Cordón Caulle. This settlements had to be abandoned in 1602 due to conflicts with native Huilliches. No eruption record is known from this era. From 1602 to the mid 18th century there were no Spanish settlements within a radius of 100 kilometres (62 mi). The closest were Valdivia and the mission of Nahuel Huapi both out of sight of the volcano. In 1759 an eruption was noticed in the Cordillera, although this is mainly attributed to Mocho. By the end of the 19th century most of the Central Valley west of Cordón Caulle had been settled by Chileans and European immigrants and an eruption was reported in 1893. The next report came in 1905, but the eruption of February 8, 1914 is the first one certain to have occurred.

    1921–1922 eruption

    On December 13, 1921, Cordón Caulle began a sub-plinian eruption, with a 6.2 kilometres (4 mi) high plume, periodic explosions and seismicity. The eruption had a Volcanic Explosivity Index of 3 and ended on February 1922.

    1960 eruption

    Eruption of Cordón Caulle following the 1960 Valdivia earthquake

    On May 24, 38 hours after the main shock of the 1960 Valdivia earthquake, the largest earthquake recorded in history, Cordón Caulle began a rhyodacitic fissure eruption. The 1960 earthquake had previously struck the whole of Chile between Talca (30°S) and Chiloé (43°S) and had an estimated moment magnitude of 9.5. Being located between two sparsely populated and by then isolated Andean valleys the eruption had few eyewitnesses and received little attention by local media due to the huge damages and losses caused by the main earthquake.[4] The eruption was fed by a 5.5 kilometres (3 mi) long and north west-west (N135°) trending fissure along which 21 individual vents have been found. These vents produced an output of about 0.25 cubic kilometres (202,678 acre·ft) DRE both in form of lava flows and tephra.

    The eruption begun in a sub-plinian style creating a column of volcanic gas, pyroclasts and ash about 8 km in height. The erupting N135° trending fissure had two craters of major activity emplaced at each end; the Gris Crater and El Azufral Crater. Volcanic vents of Cordón Caulle that were not in eruption produced visible steam emissions. After this explosive phase the eruption changed character to a more effusive one marked by rhyodacitic blocky and Aa type lava flows emitted from the vents along the N135° trending fissure. A third phase followed with the appearance of short north-north west (N165°) oriented vents transverse to the main fissure which also erupted rhyodacitic lava. The third phase ended temporarily with viscous lava obstructing the vents, but continued soon with explosive activity restricted to the Gris and El Azufral craters. The eruption come to an end on July 22.[4]

    Activity after 1960

    Following the end of the 1960 eruption, Cordón Caulle has remained relatively quiet if compared with the first half of the 20th century. On March 2 of 1972 there was a report of an eruption west of Bariloche in Argentina. The Chilean emergency office ONEMI organized a flight over the area with two volcanologists abroad. Puyehue and Cordón Caulle as well the Carrán crater were found without activity.[10] From accounts of local inhabitants of the area it is inferred that a small pumice cone was formed around 1990. In 1994 a temporarily emplaced seismic network registered tremors north of Puyehue’s cone which reached IV and V degrees on the Mercalli intensity scale. This prompted ONEMI to invoke an emergency action comite, however soon afterwards unrest ceased.[1]

    Timeline of historic eruptions

    Recorded eruptions at Puyehue-Cordón Caulle[1]
    Year Date VEI Notes
    1990 1 A small pumice cone in Cordón Caulle is believed to have formed
    1960 May 24 2 Following the 1960 Valdivia earthquake whose main shock came on May 22, 1960 Cordón Caulle started to erupt along its southern flank.
    1934 March 6 2 Puyehue-Cordón Caulle had an eruption
    1929 January 7 2 Puyehue-Cordón Caulle had an eruption
    1921 December 13 3 Cordón Caulle had a sub-plinian eruption, with a 6.2 kilometres (4 mi) high plume periodic explosions and seismicity. Ended on February 1922.
    1919 2 Puyehue-Cordón Caulle had an eruption that lasted until 1920.
    1914 February 8 2 Puyehue-Cordón Caulle had an eruption
    1905 2 Puyehue-Cordón Caulle might have had an eruption
    1893 2 Puyehue-Cordón Caulle might have had an eruption
    1759 2 Puyehue-Cordón Caulle might have had an eruption

    Geothermal activity and exploration

    See also: Geothermal power in Chile

    Picture of Los Baños hot springs on the north side of Cordón Caulle

    Cordón Caulle is a major area of geothermal activity,[5] as manifested by the several hot springs, boiling springs, solfataras and fumaroles that develop on it. The geothermal system in Cordón Caulle consists of a vapour dominated system overlain by a more superfcial steam heated aquifer. The temperatures of the vapour systems range from 260–340 °C and 150–180 °C for the aquifer.[6] High temperatures and heat flow has made Cordón Caulle one of the main sites of geothermal exploration in Chile.

    [hide]

    v • d • e

    Andean volcanoes

    Northern Volcanic Zone (6° N–3° S) Nevado del Ruiz · Nevado del Huila · Galeras · Cayambe · Reventador · Pichincha · Antisana · Illiniza · Cotopaxi · Quilotoa · Tungurahua · Sangay
    Central Volcanic Zone (15°–27° S) Coropuna · Sabancaya · Chachani · El Misti · Ubinas · Huaynaputina · Parinacota · Pastos Grandes · Sairecabur · Pacana · Licancabur · Lascar · Llullaillaco · Galán · San Francisco · Ojos del Salado
    Southern Volcanic Zone (33°–46° S) Tupungato · Tupungatito · Descabezado Grande · Cerro Azul · Nevado de Longaví · Nevados de Chillán · Antuco · Copahue · Callaqui · Lonquimay · Llaima · Sollipulli · Villarrica · Quetrupillán · Lanín · Mocho-Choshuenco · Carrán-Los Venados · Puyehue-Cordón Caulle · Osorno · Calbuco · Hornopirén · Michinmahuida · Chaitén · Corcovado · Cay · Macá · Hudson
    Austral Volcanic Zone (49°–55° S) Lautaro · Viedma · Aguilera · Reclus · Pali-Aike · Burney · Fueguino
    Note: Volcanoes are ordered by latitude from north to south

    Retrieved from “http://en.wikipedia.org/wiki/Puyehue-Cord%C3%B3n_Caulle

    Categories: Stratovolcanoes of Chile | Volcanic calderas of Chile | Fissure vents | Mountains of Chile | Geography of Los Ríos Region | Geography of Los Lagos Region | Hot springs of Chile | South Volcanic Zone | Active volcanoes | Mountain ranges of Chile

    http://en.wikipedia.org/wiki/Puyehue-Cord%C3%B3n_Caulle

    ***

    2.1 Desalination by reverse osmosis

    Desalination is a separation process used to reduce the dissolved salt content of saline water to a usable level. All desalination processes involve three liquid streams: the saline feedwater (brackish water or seawater), low-salinity product water, and very saline concentrate (brine or reject water).

    The saline feedwater is drawn from oceanic or underground sources. It is separated by the desalination process into the two output streams: the low-salinity product water and very saline concentrate streams. The use of desalination overcomes the paradox faced by many coastal communities, that of having access to a practically inexhaustible supply of saline water but having no way to use it. Although some substances dissolved in water, such as calcium carbonate, can be removed by chemical treatment, other common constituents, like sodium chloride, require more technically sophisticated methods, collectively known as desalination. In the past, the difficulty and expense of removing various dissolved salts from water made saline waters an impractical source of potable water. However, starting in the 1950s, desalination began to appear to be economically practical for ordinary use, under certain circumstances.

    The product water of the desalination process is generally water with less than 500 mg/1 dissolved solids, which is suitable for most domestic, industrial, and agricultural uses.

    A by-product of desalination is brine. Brine is a concentrated salt solution (with more than 35 000 mg/1 dissolved solids) that must be disposed of, generally by discharge into deep saline aquifers or surface waters with a higher salt content. Brine can also be diluted with treated effluent and disposed of by spraying on golf courses and/or other open space areas.

    Technical Description

    There are two types of membrane process used for desalination: reverse osmosis (RO) and electrodialysis (ED). The latter is not generally used in Latin America and the Caribbean. In the RO process, water from a pressurized saline solution is separated from the dissolved salts by flowing through a water-permeable membrane. The permeate (the liquid flowing through the membrane) is encouraged to flow through the membrane by the pressure differential created between the pressurized feedwater and the product water, which is at near-atmospheric pressure. The remaining feedwater continues through the pressurized side of the reactor as brine. No heating or phase change takes place. The major energy requirement is for the initial pressurization of the feedwater. For brackish water desalination the operating pressures range from 250 to 400 psi, and for seawater desalination from 800 to 1 000 psi.

    In practice, the feedwater is pumped into a closed container, against the membrane, to pressurize it. As the product water passes through the membrane, the remaining feedwater and brine solution becomes more and more concentrated. To reduce the concentration of dissolved salts remaining, a portion of this concentrated feedwater-brine solution is withdrawn from the container. Without this discharge, the concentration of dissolved salts in the feedwater would continue to increase, requiring ever-increasing energy inputs to overcome the naturally increased osmotic pressure.

    A reverse osmosis system consists of four major components/processes: (1) pretreatment, (2) pressurization, (3) membrane separation, and (4) post-treatment stabilization. Figure 16 illustrates the basic components of a reverse osmosis system.

    Pretreatment: The incoming feedwater is pretreated to be compatible with the membranes by removing suspended solids, adjusting the pH, and adding a threshold inhibitor to control scaling caused by constituents such as calcium sulphate.

    Pressurization: The pump raises the pressure of the pretreated feedwater to an operating pressure appropriate for the membrane and the salinity of the feedwater.

    Separation: The permeable membranes inhibit the passage of dissolved salts while permitting the desalinated product water to pass through. Applying feedwater to the membrane assembly results in a freshwater product stream and a concentrated brine reject stream. Because no membrane is perfect in its rejection of dissolved salts, a small percentage of salt passes through the membrane and remains in the product water. Reverse osmosis membranes come in a variety of configurations. Two of the most popular are spiral wound and hollow fine fiber membranes (see Figure 17). They are generally made of cellulose acetate, aromatic polyamides, or, nowadays, thin film polymer composites. Both types are used for brackish water and seawater desalination, although the specific membrane and the construction of the pressure vessel vary according to the different operating pressures used for the two types of feedwater.

    Stabilization: The product water from the membrane assembly usually requires pH adjustment and degasification before being transferred to the distribution system for use as drinking water. The product passes through an aeration column in which the pH is elevated from a value of approximately 5 to a value close to 7. In many cases, this water is discharged to a storage cistern for later use.

    Figure 16: Elements of the Reverse Osmosis Desalination Process.

    Source: O.K. Buros, et. Al., The USAID Desalination Manual, Englewood, N.J., U.S.A., IDEA Publications.

    Extent of Use

    The capacity of reverse osmosis desalination plants sold or installed during the 20-year period between 1960 and 1980 was 1 050 600 m3/day. During the last 15 years, this capacity has continued to increase as a result of cost reductions and technological advances. RO-desalinated water has been used as potable water and for industrial and agricultural purposes.

    Potable Water Use: RO technology is currently being used in Argentina and the northeast region of Brazil to desalinate groundwater. New membranes are being designed to operate at higher pressures (7 to 8.5 atm) and with greater efficiencies (removing 60% to 75% of the salt plus nearly all organics, viruses, bacteria, and other chemical pollutants).

    Industrial Use: Industrial applications that require pure water, such as the manufacture of electronic parts, speciality foods, and pharmaceuticals, use reverse osmosis as an element of the production process, where the concentration and/or fractionating of a wet process stream is needed.

    Agricultural Use: Greenhouse and hydroponic farmers are beginning to use reverse osmosis to desalinate and purify irrigation water for greenhouse use (the RO product water tends to be lower in bacteria and nematodes, which also helps to control plant diseases). Reverse osmosis technology has been used for this type of application by a farmer in the State of Florida, U.S.A., whose production of European cucumbers in a 22 ac. greenhouse increased from about 4 000 dozen cucumbers/day to 7 000 dozen when the farmer changed the irrigation water supply from a contaminated surface water canal source to an RO-desalinated brackish groundwater source. A 300 l/d reverse osmosis system, producing water with less than 15 mg/1 of sodium, was used.

    In some Caribbean islands like Antigua, the Bahamas, and the British Virgin Islands (see case study in Part C, Chapter 5), reverse osmosis technology has been used to provide public water supplies with moderate success.

    In Antigua, there are five reverse osmosis units which provide water to the Antigua Public Utilities Authority, Water Division. Each RO unit has a capacity of 750 000 l/d. During the eighteen-month period between January 1994 and June 1995, the Antigua plant produced between 6.1 million l/d and 9.7 million l/d. In addition, the major resort hotels and a bottling company have desalination plants.

    In the British Virgin Islands, all water used on the island of Tortola, and approximately 90% of the water used on the island of Virgin Gorda, is supplied by desalination. On Tortola, there are about 4 000 water connections serving a population of 13 500 year-round residents and approximately 256 000 visitors annually. In 1994, the government water utility bought 950 million liters of desalinated water for distribution on Tortola. On Virgin Gorda, there are two seawater desalination plants. Both have open seawater intakes extending about 450 m offshore. These plants serve a population of 2 500 year-round residents and a visitor population of 49 000, annually. There are 675 connections to the public water system on Virgin Gorda. In 1994, the government water utility purchased 80 million liters of water for distribution on Virgin Gorda.

    In South America, particularly in the rural areas of Argentina, Brazil, and northern Chile, reverse osmosis desalination has been used on a smaller scale.

    Figure 17: Two Types of Reverse Osmosis Membranes.

    Source: O.K. Buros, et. al.. The USAID Desalination Manual, Englewood, N.J., U.S.A., IDEA Publications

    Operation and Maintenance

    Operating experience with reverse osmosis technology has improved over the past 15 years. Fewer plants have had long-term operational problems. Assuming that a properly designed and constructed unit is installed, the major operational elements associated with the use of RO technology will be the day-to-day monitoring of the system and a systematic program of preventive maintenance. Preventive maintenance includes instrument calibration, pump adjustment, chemical feed inspection and adjustment, leak detection and repair, and structural repair of the system on a planned schedule.

    The main operational concern related to the use of reverse osmosis units is fouling. Fouling is caused when membrane pores are clogged by salts or obstructed by suspended particulates. It limits the amount of water that can be treated before cleaning is required. Membrane fouling can be corrected by backwashing or cleaning (about every 4 months), and by replacement of the cartridge filter elements (about every 8 weeks). The lifetime of a membrane in Argentina has been reported to be 2 to 3 years, although, in the literature, higher lifespans have been reported.

    Operation, maintenance, and monitoring of RO plants require trained engineering staff. Staffing levels are approximately one person for a 200 m3/day plant, increasing to three persons for a 4 000 m3/day plant.

    Level of Involvement

    The cost and scale of RO plants are so large that only public water supply companies with a large number of consumers, and industries or resort hotels, have considered this technology as an option. Small RO plants have been built in rural areas where there is no other water supply option. In some cases, such as the British Virgin Islands, the government provides the land and tax and customs exemptions, pays for the bulk water received, and monitors the product quality. The government also distributes the water and in some cases provides assistance for the operation of the plants.

    Costs

    The most significant costs associated with reverse osmosis plants, aside from the capital cost, are the costs of electricity, membrane replacement, and labor. All desalination techniques are energy-intensive relative to conventional technologies. Table 5 presents generalized capital and operation and maintenance costs for a 5 mgd reverse osmosis desalination in the United States. Reported cost estimates for RO installations in Latin American and the Caribbean are shown in Table 6. The variation in these costs reflects site-specific factors such as plant capacity and the salt content of the feedwater.

    The International Desalination Association (IDA) has designed a Seawater Desalting Costs Software Program to provide the mathematical tools necessary to estimate comparative capital and total costs for each of the seawater desalination processes.

    Table 5 U.S. Army Corps of Engineers Cost Estimates for RO Desalination Plants in Florida

    Feedwater Type Capital Cost per Unit of Daily Capacity ($/m3/day) Operation & Maintenance per Unit of Production ($/m3)
    Brackish water 380 – 562 0.28 – 0.41
    Seawater 1341 – 2379 1.02 – 1.54

    Table 6 Comparative Costs of RO Desalination for Several Latin American and Caribbean Developing Countries

    Country Capital Cost ($/m3/day) Operation and Maintenance ($/m3) Production Cost* ($/m3)a
    Antigua 264 – 528 0.79 – 1.59
    Argentina
    3.25
    Bahamas

    4.60 – 5.10
    Brazil 1454 – 4483
    0.12 – 0.37
    British Virgin Islands 1190 – 2642
    b3.40 – 4.30
    Chile 1300
    1.00

    a Includes amortization of capital, operation and maintenance, and membrane replacement.
    b Values of $2.30 – $3.60 were reported in February 1994.

    Effectiveness of the Technology

    Twenty-five years ago, researchers were struggling to separate product waters from 90% of the salt in feedwater at total dissolved solids (TDS) levels of 1 500 mg/1, using pressures of 600 psi and a flux through the membrane of 18 l/m2/day. Today, typical brackish installations can separate 98% of the salt from feedwater at TDS levels of 2 500 to 3 000 mg/1, using pressures of 13.6 to 17 atm and a flux of 24 l/m2/day – and guaranteeing to do it for 5 years without having to replace the membrane. Today’s state-of-the-art technology uses thin film composite membranes in place of the older cellulose acetate and polyamide membranes. The composite membranes work over a wider range of pH, at higher temperatures, and within broader chemical limits, enabling them to withstand more operational abuse and conditions more commonly found in most industrial applications. In general, the recovery efficiency of RO desalination plants increases with time as long as there is no fouling of the membrane.

    Suitability

    This technology is suitable for use in regions where seawater or brackish groundwater is readily available.

    Advantages

    · The processing system is simple; the only complicating factor is finding or producing a clean supply of feedwater to minimize the need for frequent cleaning of the membrane. · Systems may be assembled from prepackaged modules to produce a supply of product water ranging from a few liters per day to 750 000 l/day for brackish water, and to 400 000 l/day for seawater; the modular system allows for high mobility, making RO plants ideal for emergency water supply use.

    · Installation costs are low.

    · RO plants have a very high space/production capacity ratio, ranging from 25 000 to 60 000 l/day/m2.

    · Low maintenance, nonmetallic materials are used in construction.

    · Energy use to process brackish water ranges from 1 to 3 kWh per 1 0001 of product water.

    · RO technologies can make use of use an almost unlimited and reliable water source, the sea.

    · RO technologies can be used to remove organic and inorganic contaminants.

    · Aside from the need to dispose of the brine, RO has a negligible environmental impact.

    · The technology makes minimal use of chemicals.

    Disadvantages

    · The membranes are sensitive to abuse. · The feedwater usually needs to be pretreated to remove particulates (in order to prolong membrane life).

    · There may be interruptions of service during stormy weather (which may increase particulate resuspension and the amount of suspended solids in the feedwater) for plants that use seawater.

    · Operation of a RO plant requires a high quality standard for materials and equipment.

    · There is often a need for foreign assistance to design, construct, and operate plants.

    · An extensive spare parts inventory must be maintained, especially if the plants are of foreign manufacture.

    · Brine must be carefully disposed of to avoid deleterious environmental impacts.

    · There is a risk of bacterial contamination of the membranes; while bacteria are retained in the brine stream, bacterial growth on the membrane itself can introduce tastes and odors into the product water.

    · RO technologies require a reliable energy source.

    · Desalination technologies have a high cost when compared to other methods, such as groundwater extraction or rainwater harvesting.

    Cultural Acceptability

    RO technologies are perceived to be expensive and complex, a perception that restricts them to high-value coastal areas and limited use in areas with saline groundwater that lack access to more conventional technologies. At this time, use of RO technologies is not widespread.

    Further Development of the Technology

    The seawater and brackish water reverse osmosis process would be further improved with the following advances:

    · Development of membranes that are less prone to fouling, operate at lower pressures, and require less pretreatment of the feedwater. · Development of more energy-efficient technologies that are simpler to operate than the existing technology; alternatively, development of energy recovery methodologies that will make better use of the energy inputs to the systems.

    · Commercialization of the prototype centrifugal reverse osmosis desalination plant developed by the Canadian Department of National Defense; this process appears to be more reliable and efficient than existing technologies and to be economically attractive.

    Information Sources

    Contacts

    John Bradshaw, Engineer and Water Manager, Antigua Public Utilities Authority, Post Office Box 416, Thames Street, St. Johns, Antigua. Tel/Fax (809)462-2761.

    Chief Executive Officer, Crystal Palace Resort & Casino, Marriot Hotel, Post Office Box N 8306, Cable Beach, Nassau, Bahamas. Tel. (809)32- 6200. Fax (809)327-6818.

    General Manager, Water and Sewerage Corporation, Post Office Box N3905, Nassau, Bahamas. Tel. (809)323-3944. Fax (809)322-5080.

    Chief Executive Officer, Atlantis Hotel, Sun International, Post Office Box N4777, Paradise Island, Nassau, Bahamas. Tel. (809)363-3000. Fax (809)363-3703.

    Vincent Sweeney, Sanitary Engineer, c/o Caribbean Environmental Health Institute (CEHI), Post Office Box 1111, Castries, Saint Lucia. Tel. (809)452-2501. Fax (809)453-2721. E-mail: cehi@isis.org.lc.

    Guillermo Navas Brule, Ingeniero Especialista Asuntos Ambientales, Codelco Chile Div. Chuquicamata Fono, Calama, Chile. Tel. (56-56)32-2207. Fax (56-56)32-2207.

    William T. Andrews, Managing Director, Ocean Conversion (BVI) Ltd, Post Office Box 122, Road Town, Tortola, British Virgin Islands.

    Roberta Espejo Guasp, Facultad de Ciencias, Universidad Católica del Norte, Departamento Física, Av. Angamos 0610, Casilla de Correo 1280, Antofagasta, Chile. Tel. (56-55)24-1148 anexo 211-312-287. Fax (56-55)24-1724/24-1756. E-mail: respejo@socompa.cecun.ucn.cl.

    María Teresa Ramírez, Ingeniero de Proyectos, Aguas Industriales, Ltda., Williams Rebolledo 1976, Santiago, Chile. Tel. (562)238-175S. Fax (562)238-1199.

    Claudison Rodríguez, Economista, Instituto ACQUA, Rua de Rumel 300/401,22210-010 Rio de Janeiro, Rio de Janeiro, Brasil. Tel. (55-21)205-5103. Fax (55-51)205-5544. E-mail: solon@omega.encc.br.

    Joseph E. Williams, Chief Environmental Health Officer, Environmental Health Department, Ministry of Health and Social Security, Duncombe Alley, Grand Turk, Turks and Caicos Islands, BWI. Tel (809)946-2152/946-1335. Fax (809)946-2411.

    Bibliography

    Birkett, J.D. (1987). “Factors Influencing the Economics of Desalination.” In Non-Conventional Water Resources Use in Developing Countries. New York, United Nations, pp. 89-102. (Natural Resources/Water Series No. 22)

    Boari, et al. 1978. “R.O. Pilot Plants Performance in Brackish Water Desalination.,” Desalination, 24, pp. 341-364.

    Buros, O.K. 1987. “An Introduction to Desalination.” In Non-Conventional Water Resources Use in Developing Countries. New York, United Nations, pp. 37-53. (Natural Resources/Water Series No. 22)

    —-, et al. 1982. The USAID Desalination Manual. Englewood, N.J., U.S.A., IDEA. (Originally published by USAID/CH2M Hill)

    Cant, R.V. 1980. “Summary of Comments on R.A. Tidball’s ‘Lake Killarney Reverse Osmosis Plant.”‘ In P. Hadwen (ed.). Proceedings of the United Nations Seminar on Small Island Water Problems, Barbados. New York, UNDP. pp. 552-554.

    Childs, W.D., and A.E. Dabiri. 1992. “Desalination Cost Savings or VARI-RO.” Pumping Technology, 87, pp. 109-135.

    de Gunzbourg, J., and T. Froment. 1987. “Construction of a Solar Desalination Plant (40 cum/day) for a Caribbean Island,” Desalination, 67, pp. 53-58.

    Dodero, E., et al. 1983. “Tres Años de Experiencia en la Planta de Desalinación de Aguas de Selva, Provincia de Santiago del Estero.” Paper presented at the 6° Congreso Argentino de Saneamiento, Salta, Argentina.

    Eisenberg, Talbert N., and E. Joe Middlebrooks. 1992. “A Survey of Problems with Reverse Osmosis Water Treatment,” American Water Works Association Journal, 76(8), p. 44.

    Furukawa, D.H., and G. Milton. 1977. ” High Recovery Reverse Osmosis with Strontium and Barium Sulfate in a Brackish Wellwater Source,” Desalination, 22(1,2,3), p. 345.

    Gibbs, Robert, 1982. “Desalinización en México: Uso de la Tecnología Existente Mas Innovación,” Agua (Houston, Texas), 1, 3; 4, pp. 17-20.

    Gomez, Evencio G. 1979. “Ten Years Operation Experience at 7.5 Mgd Desalination Plant; Rosarito B. Cafa, Mexico,” Desalination, 31(1), pp. 77-90.

    Hall, W.A. 1980. “Desalination: Solution or New Problem for Island Water Supplies.” In P. Hadwen (ed.), Proceedings of the United Nations Seminar on Small Island Water Problems, Barbados. New York, UNDP, pp. 542-543.

    IDA. 1988. Worldwide Inventory of Desalination Plants. Topsfield, Mass., U.S.A.

    Lawand, T.A. 1987. “Desalination With Renewable Energy Sources.” In Non-Conventional Water Resources Use in Developing Countries. New York, United Nations, pp. 66-86. (Natural Resources/Water Series No. 22)

    Libert, J.J. 1982. “Desalination and Energy,” Desalination, 40, pp. 401-406.

    Niehaus, F. Guillermo. 1991. “Separación por membranas.” In Segundo Seminario de Purificación y Tratamiento de Agua, Santiago, Colegio de Ingenieros de Chile, pp. 51-63.

    Office for Technology Assessment (OTA). 1988. Using Desalination Technologies/or Water Treatment. Washington, D.C., U.S. Congress.

    Toelkes, W.E. 1987. “The Ebeye Desalination Project: Total Utilization of Diesel Waste Heat,” Desalination, 66, pp. 59-66.

    Torres, M., J.A. Vera, and F. Fernandez. 1985. “20 Years of Desalination in the Canary Islands, Was It Worth It?” Aqua, 3, pp. 151-155.

    Troyano, F. 1979. “Introductory Report (Desalination: Operation and Economic Aspects of Management).” In Proceedings of the. Seminar on Selected Water Problems in Islands and Coastal Areas with Special Regard to Desalination of Groundwater, San Anton, Malta. New York, Pergamon Press, pp. 371-375.

    Water and Sewage Works. 1988. “Reverse Osmosis Used for Water Desalination in Sea World,” 124(3), p. 81.

    Wild, Peter M., and Geoffrey W. Vickers. 1991. “The Technical and Economic Benefits of Centrifugal Reverse Osmosis Desalination.” In IDA World Conference on Desalination and Water Reuse. Topsfield, Mass., U.S.A., IDP.

    World Water. 1982. “Desalter Systems for Man-made Islands,” July, pp. 39-42.

    —-. 1984. “RO Renewal Rate Could Be Critical,” July, pp. 35-39.

    —-. 1986. “Reverse Osmosis Still Needs Careful Treatment,” December, pp. 33-35.

    http://www.oas.org/usde/publications/unit/oea59e/ch20.htm

    ***

    Energy Conversion Devices Announces 1.87 Megawatt Uni-Solar Installation on Flanders Expo Hall in Belgium

    Rochester Hills, Mich., January 26, 2010 – Energy Conversion Devices, Inc. (ECD) (NASDAQ: ENER) today announced the installation of 1.87MW of UNI-SOLAR® brand photovoltaic (PV) laminates on the Flanders Expo in Ghent, Belgium.

    The UNI-SOLAR laminates were integrated by Derbigum into a light weight building-integrated (BIPV) DERBISOLAR® product. DERBISOLAR integrates UNI-SOLAR laminates with a highly durable roofing membrane to form a waterproof BIPV solar solution.

    Derbigum chose UNI-SOLAR laminates because they are light and flexible; there is no perforation of the roofing membrane, they have excellent performance in diffuse light, and UNI-SOLAR laminates are highly damage resistant since the solar cells are concealed inside a polymer laminate and not glass.

    Mark Morelli, ECD’s president and CEO, said, “The Flanders Expo installation is an excellent example of how we work with our channel partners to develop BIPV solutions for our customers. We are very pleased with the final project, and the fact that the Flanders Expo installation is expected to produce 1.5 million kWh of clean energy per year, representing the power consumption of approximately 454 families.”

    About Energy Conversion Devices
    Energy Conversion Devices, Inc. is the leader in building integrated and commercial rooftop photovoltaics, one of the fastest growing segments of the solar power industry. The company manufactures and sells thin-film solar laminates that convert sunlight to energy using proprietary technology. ECD’s UNI-SOLAR® brand products are unique because of their flexibility, light weight, ease of installation, durability, and real-world efficiency. ECD also pioneers other alternative technologies, including a new type of nonvolatile digital memory technology that is significantly faster, less expensive, and ideal for use in a variety of applications including cell phones, digital cameras and personal computers. For more information, please visit www.energyconversiondevices.com.

    This release may contain forward-looking statements within the meaning of the Safe Harbor Provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include statements concerning our plans, objectives, goals, strategies, future events, future net sales or performance, capital expenditures, financing needs, plans or intentions relating to expansions, business trends and other information that is not historical information. All forward-looking statements are based upon information available to us on the date of this release and are subject to risks, uncertainties and other factors, many of which are outside of our control, that could cause actual results to differ materially from the results discussed in the forward-looking statements. Risks that could cause such results to differ include: our ability to successfully integrate the acquisition of Solar Integrated Technologies; our ability to maintain our customer relationships; the worldwide demand for electricity and the market for solar energy; the supply and price of components and raw materials for our products; and our customers’ ability to access the capital needed to finance the purchase of our products. The risk factors identified in the ECD filings with the Securities and Exchange Commission, including the company’s most recent Annual Report on Form 10-K and most recent Quarterly Report on Form 10-Q, could impact any forward-looking statements contained in this release.

    Contact:

    ECD / United Solar Ovonic
    Mark Trinske, Vice President
    Investor Relations & Communications
    (248) 299-6063

    Flanders Expo – Gent

    http://investor.shareholder.com/ovonics/releasedetail.cfm?ReleaseID=440203

    My Note – that would be so perfect for Haiti and for Chile’s rebuilding when they get to that point. Right now, it looks like a lot of the coast in Chile need to have a multitude of earth and rubble moving heavy equipment, a lot more helicopters to use immediately, temporary roadways and bridge fixes / mud moving – and massive clean water distribution along with food distribution across a huge area. – cricketdiane

    ***

    Category:Geography of Maule Region

    From Wikipedia, the free encyclopedia

    Jump to: navigation, search

    Pages in category “Geography of Maule Region”

    The following 25 pages are in this category, out of 25 total. This list may not reflect recent changes (learn more).

    A

    C

    D

    G

    L

    L cont.

    M

    N

    P

    R

    T

    τ

    Retrieved from “http://en.wikipedia.org/wiki/Category:Geography_of_Maule_Region

    Categories: Maule Region | Geography of Chile by region

    ***

    Announcing Shakemovie.caltech.edu

    <!–

    –> Posted in News by cacrweb
    June 30, 2006
    Tags: , ,

    Announcing shakemovie.caltech.edu – Caltech’s near real-time simulation of Southern California Seismic Events Portal.

    ShakeMovie is a new portal, serving movies made from simulations of earthquakes of magnitude 3.5 and above happening in the Southern California Region, only 45 minutes after the actual event.

    This portal has been designed to present the public with near real time visualizations of recent significant seismic events in the Southern California Region. These movies are the results of simulations carried out on a large computer cluster. When an earthquake occurs, seismic waves are generated which propagate away from the fault rupture.

    In the example shown above – a magnitude 5.0 event from Feb 22, 2003 centered three miles north of Big Bear City, CA (click for ~5MB mpeg movie file) – we see the up-and-down velocity of the Earth’s surface. Strong blue waves indicate the surface is moving rapidly downward. Strong red waves indicate rapid upward motion. When the waves pass through soft soils (sediments) they slow down and amplify. Waves speed up when they pass through hard rock. The color of the waves oscillates between red and blue indicating alternating up and down motion.

    Shakemovie was created by Caltech’s Seismological Laboratory, Instrumental Software Technologies, Inc. and Caltech’s Center for Advanced Computing Research. The project is sponsored by the United States Geological Survey, the National Science Foundation, Dell Inc, and the Southern California Seismic Network.

    ShakeMovie is found at: http://shakemovie.caltech.edu

    (from)

    http://www.cacr.caltech.edu/main/?tag=visualization

    ***

    Departamento de Geofísica, Universidad de Chile, Santiago, Chile

    http://www.dgf.uchile.cl/

    Earthquake Seismologic Maps - Chile

    Earthquake Seismologic Maps - Chile - Departamendo de Geofisica - Santiago, Chile

    Earthquake Graphs - Departamendo de Geofisica - Chile

    Earthquake Graphs - Departamendo de Geofisica - Chile

    GRUPO DE SISMOLOGÍA

    El Grupo de Sismología del Departamento de Geofísica de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile realiza investigación en las áreas de Sismotectónica, Fuente Sísmica, y Análisis de Movimientos Fuertes, manteniendo una estrecha relación con organismos y Universidades internacionales y regionales. Es el único grupo a nivel nacional que imparte docencia de postgrado en la especialidad de Sismología, apoya la docencia de pregrado de la Escuela de Ingeniería de nuestra Facultad, y tiene la responsabilidad del Servicio Sismológico Nacional. Actualmente, el grupo está constituido por cuatro Doctores en Sismología de jornada completa y dos de jornada parcial, quienes lideran varios proyectos de investigación de carácter nacional y regional, en uno de los países más sísmicos del mundo.

    ANTECEDENTES

    Chile está ubicado en una de las regiones sísmicamente más activas del mundo. Durante el período sísmico que se extiende desde el fin del siglo XVI hasta el presente, un sismo de magnitud 8 ha ocurrido en promedio cada 10 años. Prácticamente todos ellos han provocado pérdidas humanas y económicas considerables. Los niveles de vulnerabilidad y exposición debidos a los efectos de los sismos son, por ende, altos. La sismicidad en Chile está caracterizada por al menos tres rasgos de importancia: número de sismos por unidad de tiempo, gran tamaño y una diversidad de ambientes tectónicos donde estos ocurren (zonas sismogénicas).
    Los desafíos que enfrenta nuestro país ante el problema sísmico nacional hacen relevante y pertinente avanzar aún más en esta área, especialmente hacia una propuesta integral de alto nivel materializada en un futuro próximo en un programa de doctorado en Geofísica Interna con mención en Sismología y/o en Ciencias de la Ingeniería Sismorresistente o Ingeniería Sísmica. Esta necesidad es, además, compartida por los países Sudamericanos con alto grado de sismicidad, desarrollo económico y social semejante al nuestro, pero sin una masa crítica de especialistas como la existente en nuestra institución.
    En resumen, porque Chile está permanentemente expuesto a los devastadores efectos de los terremotos, la investigación en este tema presta un servicio directo a toda la población del país. Chile es un laboratorio natural excepcional para entender los fundamentos de los procesos sísmicos. Los datos sobre eventos sísmicos son excepcionales en esta parte del mundo y la integración de esta información hacia una comprensión exhaustiva del comportamiento de los sismos reposa esencialmente en la capacidad de la ciencia sísmica nacional.

    HISTORIA DE LA SISMOLOGÍA EN CHILE

    Desde la fundación de la primera universidad en 1842, naturalistas como Darwin, Graham, Domeyko, Pissis y muchos otros se interesaron en la descripción y el estudio de los terremotos en Chile debido a la alta tasa de actividad sísmica que presenta. Durante la primera década del siglo XX, el gran terremoto de Valparaíso de 1906 impulsó al gobierno chileno a crear un Servicio Sismológico, uno de los primeros observatorios sismológicos del mundo, liderado por el destacado científico Francés F. Montessus de Ballore.
    Este observatorio comenzó el registro sistemático de sismos. Gracias a ello tenemos disponible hoy uno de los mejores catálogos de sismos históricos existentes que describe los grandes eventos desde 1540 hasta el presente. Esta tradición en estudios sismológicos ha sido reconocida y continuada desde ese entonces.
    A fines de los años ’60 y comienzo de los ’70, el Departamento de Geofísica de la Universidad de Chile fue considerado por la OEA (Organización de Estados Americanos) como un centro de excelencia en sismología. Muchos estudiantes latinoamericanos obtuvieron su Master en Chile en esa época y están actualmente trabajando en universidades del extranjero.

    AREAS DE INVESTIGACIÓN

    La investigación realizada por el Grupo de Sismología tiene una orientación regional y nacional, y en consecuencia, una preocupación particular de estudiar los sismos en el país. Las líneas de investigación permanentes cultivadas por el Grupo de Sismología tienen una proyección internacional reflejada en un importante número de publicaciones ISI, y están centradas en cuatro áreas principales: sismotectónica, proceso y física de la fuente sísmica y análisis de movimientos fuertes. Estas áreas han sido reconocidas como importantes y prioritarias por el Grupo de Sismología, especialmente su impacto en la comprensión de los fenómenos tectónicos del margen Andino y por sus implicancias en ciencias de la ingeniería sísmica. Se ocupa de los problemas fundamentales de la evaluación del peligro y riesgo sísmico, esto es, la descripción de los efectos de los sismos locales y regionales expuesta en términos útiles a los científicos, ingenieros, reguladores y otras autoridades públicas. También promueve la instalación de redes de banda ancha y la creación de bases de datos.

    SISMOTECTÓNICA

    Las investigaciones relacionadas con la geometría y estructura de la placa de subducción a lo largo de Chile comenzaron hace más de 15 años. Se pusieron en marcha entonces varios programas en colaboración con diferentes instituciones (CONICYT, Chile; IRIS-PASCAL, E.E.U.U.; Fundación Andes; Institut de Physique du Globe de Strasbourg, Francia, IRD, Francia; Universidad Autónoma de México; Universidad de Arizona, E.E.U.U.; École Normale Supérieure de París, Francia; GFZ-Potsdam, Alemania; Carnegie Institución, E.E.U.U.; FONDECY, Chile; ECOS, Chile, Francia; Institut de Physique du Globe de París, Francia; Comunidad Europea, CEE). Todos estos proyectos necesitaron la instalación temporal de redes sísmicas en regiones seleccionadas del norte, centro y, recientemente, del sur de Chile. Adicionalmente, el Grupo de Sismología ha participado en análisis de terremotos fuera del territorio nacional como por ejemplo Costa Rica, 1991 (Mw=7.7), Venezuela, 1997 (M=7.0), Izmit, Turquía 1999 (Mw=7.7), y sur del Perú, 2001 (Mw=8.4).

    FUENTE SÍSMICA

    Los primeros estudios de las características sísmicas de los terremotos chilenos comenzaron con el análisis de algunos grandes eventos del norte de Chile usando estaciones de la red sismológica mundial WWSSN. El análisis de formas de onda y estudios de fases múltiples de ondas de volumen es realizado por el Grupo de Sismología utilizando los registros de los terremotos en las estaciones de las redes mundiales.
    Los nuevos avances en la tecnología satelital para el estudio de los procesos involucrados en la ocurrencia de los sismos también han ido incorporándose en Chile gracias a una fuerte colaboración con instituciones internacionales en ésta área. Es así como desde comienzos de los ’90, y gracias a un programa de colaboración franco-chileno, se han incorporado además de redes sísmicas, redes de GPS en toda la zona Norte de Chile con el objeto de estudiar la evolución espacial y temporal de los procesos involucrados en el Ciclo Sísmico. Últimamente el grupo ha incorporado las técnicas SAR de interferometría Radar.
    A mediados de los ’90, en estrecha colaboración con el Institut de Physique du Globe de Paris, , se instaló la estación sismológica de Peldehue (PEL) en recintos del Centro de Estudios Espaciales de la Universidad de Chile, a unos 40 km al norte de Santiago. Esta correspondió a un nodo de la red sismológica global francesa GEOSCOPE y fue la primera estación de banda ancha instalada en Chile, funcionando ininterrumpidamente desde entonces. Esto ha permitido un importante avance en la comprensión de los procesos físicos involucrados en la fuente sísmica de los eventos ocurridos en nuestro territorio. Desde 1996, gracias al aporte financiero de la Comunidad Europea y CONICYT, se inició un ambicioso programa multidisciplinario para estudiar la laguna sísmica Constitución-Concepción, la más antigua del país, incorporando redes sísmicas locales y una red de GPS.

    http://www.dgf.uchile.cl/investsismo.html

    http://www.dgf.uchile.cl/integ.html

    (when it becomes possible to interact with anyone there – check the link immediately above)

    ***

    My Note – I thought this was very interesting, too –

    Chile

    The Direccion Meteorologica de Chile currently has eight UV monitoring instruments in South America. These eight instruments make up a national network for solar radiation measurements. The person in charge of these instruments is Mr. Jorge Carreno C., meteorologist for the Department of Climatology and Applied Meteorology.

    In addition, there is a network of 7 NILUV instruments in Torres del Paine National Park (about 400 km north of Punta Arenas). The instruments have four channels (308 nm, 313 nm, 320 nm and 340 nm). Power from solar cells / batter. The instruments are calibrated once or twice a year with a reference instrument. The reference instrument is checked against the GUV-511 which is calibrated at Biospherical Instruments once a year.

    The Universidad de Chile, in collaboration with the Scripps Institution of Oceanography in the United States and CADIC/CONICET in Argentina, operate instruments in Valdivia, Punta Arenas, and Santiago. All locations form part of the Chilean UV Network in addition to the Inter American Institute for Global Change Research (IAI) UV Radiation Network. Contact Humberto Fuenzalida, Maria Vernet, or Susana Diaz for more information.

    The Instituto de Matematicas y Fisica, at the Universidad de Magallanes, also operates one instrument in Punta Arenas that contributes to the IAI network. Contact Claudio Casiccia for more information.

    The Departamento de Geofisica, at the Universidad de Chile, runs an instrument in Santiago which also contributes to the IAI network. Contact Humberto Fuenzalida for more information.

    The Instituto de Fisica, at the Universidad de Chile, operates an IAI linked instrument in Isla Teja, near Valdivia. Contact Charlotte Lovengreen for further information about this instrument.

    Contact Information:

    Mr. Jorge Carreno C.
    Department of Climatology and Applied Meteorology
    Meteorological Direction of Chile
    Casilla 717 Santiago – Chile

    Humberto Fuenzalida
    Universidad de Chile
    Departmento de Geofisica
    Casilla 2777 Santiago
    CHILE
    tel: +56 2 696-8730 fax: +56 2 696-8686
    hfuenzal@dgf.uchile.cl

    Maria Vernet
    Sripps institute of Oceanography
    University of California, San Diego
    La Jolla, California 92093-0218
    USA
    tel: 1 858 534-5332
    fax: 1 858 534-2997
    mvernet@ucsd.edu

    Susana Diaz
    CADIC/CONICET
    B. Houssay 200
    (9410) Ushuaia, Tierra del Fuego
    ARGENTINA
    tel: +54 2901 422754
    fax: +54 2901 430644
    subediaz@speedy.com.ar

    Claudio Casiccia
    Instituto de Matematicas y Fisica
    Universidad de Magallanes
    claudio@casiccia@umag.cl

    Charlotte Lovengreen
    CADIC/CONICET
    Instituto de Fisica
    Universidad Austral de Chile
    Isla Teja
    clovengr@uach.cl

    http://cires.colorado.edu/websites/uv/country/chile.html

    ***

    Instruments maintained by MDC
    Instrument Location Installed Contact
    110 Eppley Iquique Aug. 92 Carreno
    111 Eppley Easter Island Oct. 92 Carreno
    112 Eppley La Serena Aug. 92 Carreno
    113 YES Santiago April 93 Carreno
    114 Eppley Concepcion Aug. 92 Carreno
    115 Eppley Puerto Montt Jun. 92 Carreno
    116 Eppley Punta Arenas Aug. 92 Carreno
    117 YES 117 C.M.A. PDTE.
    Frei
    Apr. 92 Carreno

    Other Instruments in Chile
    Instruments Organization Network Station Name Nearest Town Lat/Lon Installed
    Biospherical GUV-511 Universidad de Chile, Scripps, CADIC/CONICET Chilean-UV / IAI Valdivia Valdivia 39.80S, 73.25W 1994
    Biospherical GUV-511 Universidad de Chile, Scripps, CADIC/CONICET Chilean-UV / IAI Punta Arenas Punta Arenas 53.09S, 70.55W 1994
    Biospherical GUV-511 Universidad de Chile, Scripps, CADIC/CONICET Chilean-UV / IAI Santiago Santiago 33.41S, 70.65W 1994
    Biospherical GUV-511 Universidad de Magallanes IAI Punta Arenas Punta Arenas 53.2S, 71.0W 1993
    Biospherical GUV-511 Universidad de Chile IAI Santiago Santiago 33.5S, 70.7W 1994
    Biospherical GUV-511 Universidad Austral de Chile IAI Isla Teja Valdivia 39.9S, 73.2W Dec. 1994

    Compiled by E.C. Weatherhead, Gregory Noonan, and ENV/AREP/WMO.

    http://cires.colorado.edu/websites/uv/country/chile.html

    ***

    (The following information from )

    Departamento de Ingeniería Civil – Facultad de Ciencias Físicas y Matemáticas – Universidad de Chile

    Av. Blanco Encalada 2002, Santiago – Chile   |  Teléfono: (+56) 2 9784376   |   Fax: (+56) 2 6718788

    Reportes de Terremotos

    Organismos Nacionales

    (from)

    http://www.ingcivil.uchile.cl/index.php?option=com_content&task=blogsection&id=4&Itemid=419&limit=9&limitstart=18

    Instrumentación de Estructuras

    Los equipos en estructuras de la RENADIC están destinados a registrar eventos sísmicos en distintas condiciones de suelo y como responde obras civiles durante eventos sísmicos.
    Para lo cual RENADIC mantiene y opera las siguientes redes locales de registros de sismos en estructuras:

    • Red local edificio con aisladores sísmicos del Conjunto Villa Andalucía, formada por 4 equipos digitales SSA-2 en Santiago.
    • Red local Edificio Corporativo Cámara Chilena de La Construcción, formada por un equipo digital K2 de 12 canales en Santiago.
    • Red local estructura con aisladores sísmicos Viaducto Marga-Marga, formada por un equipo digital Mt. Whitney de 18 canales y un equipo de campo libre digital Etna en Viña del Mar (V Región).
    • Red local estructura con aisladores y disipadores sísmicos Puente Amolanas, formada por un equipo digital K2 de 12 canales en Puerto Oscuro (IV Región).
    • Red local Estación Mirador Azul perteneciente al Metro S.A., localizada en la línea 5 del metro de Santiago.

    Con el fin de determinar el comportamiento sísmico o dinámico de estructuras o de edificios es posible colocar diversos tipos de sensores que dependiendo de la magnitud física que se pretenda registrar que puede medir aceleración, velocidad o desplazamiento. Generalmente la aceleración es la magnitud que mas suele utilizarse para determinar comportamiento sísmicos o dinámicos. Con este fin se colocan acelerógrafos que registran las aceleraciones que ocurren en la estructura. Generalmente un sistema de registro de aceleraciones esta formado por acelerógrafos que se colocan en diversos puntos de la estructura, los cuales envían información a una central de registro que puede ser análoga o digital, dependiendo de la forma de almacenamiento de la unidad. Con el fin es estudiar el comportamiento de estructuras reales durante eventos sísmicos, la División Estructuras-Construcción , opera a través de la Red Nacional de Acelerógrafos (RENADIC), las siguientes redes locales de acelerógrafos digitales o centrales de registro digital de acelerógrafos:

    Image Edificio Cámara Chilena de la Construcción Red local de 12 acelerógrafos, distribuidos desde los subterráneos hasta el piso 20, conectados a un registrador ALTUS K2. Objetivo : Estudio del comportamiento de un edificio en altura con estructuración típica de Chile.


    ImageComunidad Andalucía Red local formada por 4 acelerógrafos SSA-2, con dos unidades colocadas en el edificio aislado, una de campo libre y una en el edificio normal. Objetivo : Estudio del comportamiento de un edifico aislado y comparación con un edificio de referencia sin aislar.


    ImageViaducto Marga-Marga Red local formada por un registrador ALTUS MT. WHITEY con 18 acelerógrafos distribuidos por toda la estructura y un registrador ALTUS ETNA conectado a 3 acelerógrafos de campo libre. Objetivo : Estudio del comportamiento de una estructura con aisladores sísmicos.


    ImagePuente Amolanas Red local de 12 acelerógrafos, 9 acelerógrafos distribuidos por la estructuras y 3 acelerógrafos de campo libre, conectados a un registrador ALTUS K2. Objetivo : Estudio del comportamiento de una estructura con disipadores de energía.

    Localización de Equipos

    Localización de Equipos

    Localidad Equipo Tipo
    Arica I Región Etna Estación 1 Campo Libre Digital Operación conjunta Depto. Ingeniería Civil – Depto. de Geofísica, U. de Chile
    Etna Estación 2 Campo Libre Digital Operación conjunta Depto. Ingeniería Civil – Depto. de Geofísica, U. de Chile
    SMA-1 Estación 3 Campo Libre Análogo RENADIC, U. de Chile
    SMA-1 Estación 4 Campo Libre Análogo RENADIC, U. de Chile
    Poconchile I Región Etna Estación 1 Campo Libre Digital Operación conjunta Depto. Ingeniería Civil – Depto. de Geofísica, U. de Chile
    SMA-1 Estación 2 Campo Libre Análogo RENADIC, U. de Chile
    Putre I Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Cuya I Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Pisagua I Región Etna Estación 1 Campo Libre Digital Operación conjunta Depto. Ingeniería Civil – Depto. de Geofísica, U. de Chile
    SMA-1 Estación 2 Campo Libre Análogo RENADIC, U. de Chile
    Baquedano I Región QDR Campo Libre Digital RENADIC, U. de Chile
    Alto Hospicio I Región QDR Campo Libre Digital RENADIC, U. de Chile
    Iquique I Región Etna Estación 1 Campo Libre Digital Operación conjunta Depto. Ingeniería Civil – Depto. de Geofísica, U. de Chile
    SMA-1 Estación 2 Campo Libre Análogo RENADIC, U. de Chile
    SMA-1 Estación 3 Campo Libre Análogo RENADIC, U. de Chile
    Pica I Región Etna Campo Libre Digital Operación conjunta Depto. Ingeniería Civil – Depto. de Geofísica, U. de Chile
    El Loa I Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Tocopilla II Región Etna Estación 1 Campo Libre Digital Operación conjunta Depto. Ingeniería Civil- Depto. de Geofísica, U. de Chile
    SMA-1 Estación 2 Campo Libre Análogo RENADIC, U. de Chile
    Mejillones II Región Etna Campo Libre Digital Operación conjunta Depto. Ingeniería Civil – Depto. de Geofísica, U. de Chile
    Calama II Región Etna Campo Libre Digital Operación conjunta Depto. Ingeniería Civil- Depto. de Geofísica, U. de Chile
    Antofagasta II Región Etna Campo Libre Digital Operación conjunta Depto. Ingeniería Civil- Depto. de Geofísica, U. de Chile
    Taltal II Región SMA-1 Campo Libre Análogo NEW RENADIC, U. de Chile
    Caldera III Región QDR Campo Libre Digital NEW RENADIC, U. de Chile
    Copiapo III Región QDR Campo Libre Digital RENADIC, U. de Chile
    Vallenar III Región QDR Campo Libre Digital RENADIC, U. de Chile
    La Serena IV Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Illapel IV Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Puente Amolanas  IV Región K2 (12 puntos de registro) Red Local Digital RENADIC, U. de Chile
    Papudo V Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Valparaíso V Región SMA-1 Estación 1 Campo Libre Análogo RENADIC, U. de Chile
    SMA-1 Estación 2 Campo Libre Análogo RENADIC, U. de Chile
    Viña del Mar V Región Mt. Whitney -Etna-QDR (24 puntos de registro) Red Local Digital  RENADIC, U. de Chile
    QDR Campo Libre Digital RENADIC, U. de Chile
    Llolleo V Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Santiago K2 (12 puntos de registro) Red Local Digital RENADIC, U. de Chile
    Red de SSA-2 ( 4 Estaciones) Red Local Digital RENADIC, U. de Chile
    SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    QDR Campo Libre Digital 1 RENADIC, U. de Chile
    QDR Campo Libre Digital 2 RENADIC, U. de Chile
    QDR Campo Libre Digital 3 RENADIC, U. de Chile
    Talagante Región Metropolitana QDR Campo Libre Digital RENADIC, U. de Chile
    Rancagua VI Región QDR Campo Libre Digital RENADIC, U. de Chile
    Talca VII Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Curico VII Región QDR Campo Libre Digital RENADIC, U. de Chile
    Chillan VIII Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Concepción VIII Región SMA-1 Campo Libre Análogo RENADIC, U. de Chile
    Angol IX Región QDR Campo Libre Digital RENADIC, U. de Chile
    Valdivia X Región QDR Campo Libre Digital RENADIC, U. de Chile
    Más…
    (from)

    Departamento de Ingeniería Civil – Facultad de Ciencias Físicas y Matemáticas – Universidad de Chile

    Av. Blanco Encalada 2002, Santiago – Chile   |  Teléfono: (+56) 2 9784376   |   Fax: (+56) 2 6718788

    Misión

    “Cultivar, crear y transmitir conocimiento en Ciencias de la Ingeniería y tecnologías en el ámbito de la Ingeniería Civil que signifiquen aportes efectivos al avance del conocimiento, la formación de ingenieros en el área y al análisis y solución de los problemas nacionales.”

    Estructuras – Construcción – Geotechnia

    ***